Extensions 1→N→G→Q→1 with N=C3xD9 and Q=C32

Direct product G=NxQ with N=C3xD9 and Q=C32
dρLabelID
D9xC33162D9xC3^3486,220

Semidirect products G=N:Q with N=C3xD9 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3xD9):C32 = C32xC9:C6φ: C32/C3C3 ⊆ Out C3xD954(C3xD9):C3^2486,224

Non-split extensions G=N.Q with N=C3xD9 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3xD9).1C32 = C3xC9:C18φ: C32/C3C3 ⊆ Out C3xD954(C3xD9).1C3^2486,96
(C3xD9).2C32 = C9xC9:C6φ: C32/C3C3 ⊆ Out C3xD9546(C3xD9).2C3^2486,100
(C3xD9).3C32 = D9:He3φ: C32/C3C3 ⊆ Out C3xD9546(C3xD9).3C3^2486,106
(C3xD9).4C32 = D9:3- 1+2φ: C32/C3C3 ⊆ Out C3xD9546(C3xD9).4C3^2486,108
(C3xD9).5C32 = C92:7C6φ: C32/C3C3 ⊆ Out C3xD9546(C3xD9).5C3^2486,109
(C3xD9).6C32 = C92:8C6φ: C32/C3C3 ⊆ Out C3xD9186(C3xD9).6C3^2486,110
(C3xD9).7C32 = D9xC3xC9φ: trivial image54(C3xD9).7C3^2486,91
(C3xD9).8C32 = D9xHe3φ: trivial image546(C3xD9).8C3^2486,99
(C3xD9).9C32 = D9x3- 1+2φ: trivial image546(C3xD9).9C3^2486,101

׿
x
:
Z
F
o
wr
Q
<